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1.0 Full second order closure for wall bounded flows.

1.1 Introduction.

A full second order closure for wall bounded shear flows is developed, which includes the

Reynolds stress equations and the equations for all relevant components of the dissipation

rate tensor. Incompressible and compressible plane flows are considered, but this report is

only concerned with incompressible flows.

There are several reasons for the development of a complete second order closure. It can

be shown that the anisotropy of stress and dissipation rate tensors approaches the same limit

at the. wall, but the derivative of the anisotropy of the dissipation rate is twice the derivative of

the stress anisotropy at the wall. Another reason is the possibiity of constructing apppropriate

time scales in the near wall region. The standard second order closure incorporates the

transport equation for the trace of the dissipation rate tensor and relates the components of
the tensor via local relations to the trace. The time scale for the destruction of the trace is

usually modelled using the time scale

where the modified dissipation rate _ is defined by

with y denoting the coordinate normal to the wall. This is an acceptable model in the region

close to the wall if and only if the dissipation rate is a nondecreasing function of the distance

from the wall, because the kinetic energy is of order O(k) = y2 near the wall which implies

that the second term in the modified dissipation rate is constant. Direct simulations of

boundary layers and channel flows, however, have shown (see Mansour et al., 1988) that the

dissipation rate is a rapidly decreasing function of the wall distance in the viscous sublayer

and the destruction model using the time scale VD becomes thus a production term in the near

wall region. This is clearly a violation of realizability for the destruction model. It follows

that this type of closure model does not represent properly the production of dissipation rate

near the wall and the sign reversal of the viscous destruction model must make up for this

deficit in production. The motivation for the modified time scale is the fact that the time

scale
k

T----

E

goes to zero as the wall is approached. It will be shown below that the full dissipation rate

tensor allows a realizable and tensorially invariant construction of a time scale or a time scale

tensor that reaches a finite and nonzero limit value at the wall.



A second point that sets the near wall region apart from the high Reynolds number

regime of the boundary layer is the growth of the pressure corelations with distance from the

wall. It will be shown below that the usual split of the pressure correlations into pressure

transport and pressure rate of strain correlations is not appropriate near the wall, because the

split correlations grow with different rates and the Taylor series for the original correlation

involving the fluctuating pressure gradient can be expressed locally up to second order in

terms of velocity correlations.

1.2 Exact equations for the dissipation rate tensor.

Incompressible flows are considered first. Standard manipulations lead to the transport

equations for the dissipation rate tensor in a Cartesian coordinate system defined by

_o_- 2//o_v"O,v'_ (1)

with expectation denoted by (e_Z). The equations can be given in the form

(o,+ (v.)o_)(_) = o_[//o.<_o_>- (v:,_)] + s_ + s_ + sL + s_ + s_ - D_ (2)

The various source terms are defined as follows.

sL - -(_O,v') - (_O,v_)

21/ 2 I i 2 r r

p

I t 2 t I 2
s L - -2//((_o_,)o_(v.) + (v,O_v_)O,_(_))

t_2 .VI _2 I

(3)

(4)

(5)

(6)

(7)

(s)

Furthermore is the fourth order dissipation tensor defined as

- 2//O,v"O,v' (9)

The properties of the source/sink terms on the right hand side need to be established before

closure expressions can be constructed.

1.2.1 Equivalent forms of the pressure correlations.



The pressurecorrelations S_ can be given in several equivalent forms. It is instructive to

split them analogous to the pressure-rate of strain correlations in the stress equations. It

follows from (6) that

s_4= - 2__{o_(a.,yo.,,&)+ o_,(o.,r,'a.,v:)} + B,_,
P

where the non-gradient part is defined by

B_ = _(O,p'O4OoV_+ ay))

The non-gradient part B_# resembles the pressure-rate of strain correlation and shares with

it the property

B,_ = 0

It follows that B_ redistributes intensity among the components of the dissipation tensor

and leaves its trace unaffected. Further splitting of B_ leads to

Boa = 2_'O,(O_p'(Oov'_+ Oav')) - -2(a,,v (a_va + - IJ CIf ] l

P

The non-diffusive part of Boa contains the Laplacian of the pressure fluctuations which is

governed by
t

' ' 2O v' O 2 ,,- = O_v_O_v_+ (_) - G_(vov_)

This equation has an important consequence: The non-diffusive part of B_Z can be repre-

sented locally in terms of velocity fluctuations. We get

B,,_,= U'a.,(a.j(ao,4, + a_,,/))+
P

! l I I I2_,<o_,,_o6,,.,(O_v_+ o_o)>+ 4_<o_(o_;_ + o_v_))o_<_)

We conclude that the non-diffusive and non-gradient part of the pressure correlations does

not contain a direct influence of the wall and the wall effects can be represented as gradients

and divergence of a flux. This property very important for the modelling effort. Inspection

of the local part of B¢,_ shows that it has the structure of the primary production term (5).

Recasting this part in terms of vorticity and strain rate defined by

1 I

.,_ -- _e_._O_v._

and
1

s_z - _(Gv_ + O_v,_)
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leadsto
2// I t t t . tJ J .31<o_v_o_v_(O_v_+ o_v_)>= _ _ _ _ - s_<_'_'_;>

whereas the primary production terms appear as

S_ i I I t t I • I t i r r I= --4_,((so._s_s_ ) + e-_,Is_s6_,/ + e_,_s_6s6_./ + _o_,,(s_6_,_/)

The last term can be recast in terms of the Kroneeker delta using the tensor relation

3w6 5_ 6_ n

leading to

S3fl I I t t t t I _ t I I I

t t I I I_. I I I I_ t I I I_ e I I I I_

It is apparent that no complete cancellation of triple correlations takes place. The pressure

correlations appear now as a combination of the divergence of a flux and sources.

where the flux is defined by

S_ P P

21] i !

or

2u

F_'_ = -7(<0_;'(0.,_ + 0_,L)>- _._(o,p'O,v'_>- _,<o.,p'o,v'))

The trace of the flux F_6 is not zero but given by

F_,_ = - 4u <O.rp' O.,tv; )
P

The redistributive sources are given by

Q,._- 2_,<O,v'_O_' ' ' ' ' 'vv(O,v _ + O_v,)) + 4u(O._v_(O_vz + OZv,))O6(v._)

! V twhere the trace of Q_ is zero. it is noteworthy that one of the components of {O._p 0,1 _)

can be expressed in terms of a component of the dissipation tensor

P

6



according to the powerseriesfor the pressuregiven below (19). For 7 # 2 the gradient of the

wall pressure can be expressed in terms of velocity using the momentum balances. In fact

l O._p, 2 ,_- IJOyyV3,
P

holds at the wall y = 0.0. It follows that the wall pressure does not exert a direct influence on

the dissipation rates if the expansion is carded out to second order. It is clear that modelling

can be based on the properties of the flux and the redistributive source terms. However, the

growth rates for the terms in the different formulations of the pressure correlations decide in

the end their usefulness. This will be investigated in the following chapter.

1.2.2 Taylor series expansions for the near wall region.

The near wall region can be analyzed with Taylor series. The coordinate system is

assumed to be located at the wall and x2 is the direction of the wall normal pointing into

the flow field. It is convenient to rename the coordinates and variables as follows: xi = x,

x2 = y, x3 = z and vl = u, v2 = v, vs = w. The velocity components can be expanded with

respect to the wall normal y

u(x,y,z,t) = ao + axy + a2y 2 + aay 3 + O(y 4) (10)

Y(x, y, z, t ) -_ b 0 -{- bly 3t- b2y 2 -_ b3y 3 -_- O(y 4) (11)

w(x,y,z,t) = co+ + e2y + c3y3+ 0(¢) (12)

where the coefficients are stochastic functions of x, z, t but not y. They are defined by

10-iu

aj(x,z,t) -- j! _gj(O)

I OJv

bj(x,z,t) - j!-_yj(O)

I OJw

cj(x,z,t) -- j] OyJ (0)

The noslip condition at the wall implies that

a0=b0=c0=0 (13)

holds and mass balance

leads to

O_v_ =0 (14)

OyVo ----bl = 0 (15)
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and

for n = I,2,....

given by

O_an + Ozcn = -(n + 1)bn+1

The Taylor series for a fixed wall without suction or blowing are therefore

u(x,y,z,t) = a,y + a2y2 + a3y3 + O(y4)

v(x,y,z,t) = b2y2 + bay3 -t-O(y4)

w(x,U,z,t) = clu + c_ _ + c3U3+ O(y4)

(16)

(17)

(is)

The expansion for the pressure can be given as follows

p(x,y,z,t) = Po + 2#b2y + 3#b3y 2 + p3u a + O(y 4) (19)

where # denotes the dynamic viscosity and

1 OJp (0)
pj(x,z,t) = j! _yj

and the momentum balance normal to the wall was applied to a point at the wall. The

expansion for the pressure gradient can be shown to be

O_p = 2# b2 + 2_y 363 + 3y 2 p3 + O(g 3)

c2 03 b2 _ 03 b3

which shows that the terms up to first order are proportional to viscosity. The components

of the Reynolds stress tensor appear in expanded form as

(u2) = y2(al 2) + 2y3(ala2) + y4(2(ala3) + (a2)) + O(g 5) (20)

(v_)= ¢(b_)+ 2¢(b_ba)+O(y6) (21)

(uv} = y3(alb2 ) + y4((alb3 ) + (a262)) + O(y 5) (23)

The components of the dissipation rate tensor vary near the wall according to

{tEll } = 2Y{(a_) + 4y{ala2)

+y2(6(ala3) + 4(a_) + {(O_al) 2) + ((Oza,)2)) + O(y3)} (24)

(25)

(_3) = 2_{¢_) + 4_(c_c=)



+_2(6<c,c3)+ 4(4> + ((0,_,)2>+ (0z¢1/)+o(v3)} (26)

(e12) = 2v{2y(alb2) + y2(4(a2b2) + 3(alb3)) + O(y3)} (27)

It is apparent from these series that different components grow differently near the wall. It

follows that the boundary values for the dissipation rate tensor are given by

(_,,)(0) = 2.(_) (2s)

(¢22)(0)= 0.0 (29)

(e33)(0) = 2v(c_) (30)

(_,_)(o)= o.o (31)

It can be shown that the anisotropy of the Reynolds stress tensor is equal to the anisotropy

of the dissipation rate tensor at the wall and that the normal derivative at the wall of the

anisotropy tensor of the dissipation rate is twice the normal derivative for the stress ten-

sor. We consider now the near wall variation of the individual terms in the dissipation rate

equations.

1.2.2.1 Viscous Diffusion.

The dominant term in viscous diffusion is the normal derivative given by

Or(rOy(ell)) = 4v2(6(ala3) 4- 4(a22) 4- ((Ozal)2) 4- ((oqza 1)2)) 4- O(y) (32)

a_(,,a,(_:))= 16._(b_)+ o(y)

Or(rOy<e33)) = 4v2(6<ClCa) 4- 4(c_) 4- <(Oxc ,)2) 4- <(azCl)2>) 4- O(y)

Oy(f../(_y(£12)) = 4v2(4(a2b2) 4- 3(alba)) 4- O(y)

and they emerge as terms of order unity near the wall for all components.

1.2.2.2 Turbulent diffusion.

Turbulent diffusion of the dissipation rate component e_ is defined by

9

(33)

(34)

(35)

(36)



For the case of boundary layer type flows only the flux normal to the wall is relevant. The

series expansions lead then to the following expressions for the components of the dissipation
rate tensor

cOvE 11 = 2y(b2ell(0)> + O(y 2) (37)

GF__ =4d<b2,_(o)) + o(u') (3s)

GF_3 = 2y<b2_,3(o))+ o(y _) (39)

GF__ = 3_<b_G_,_(o))+ o(d) (40)

The expansions show that turbulent diffusion is not of leading order near the wall.

1
1.2.2.3 Secondary production S_#.

The interaction of the mean rate of strain and the dissipation rate tensor acts as production

for the dissipation rates in the same fashion as the Reynolds stress and mean strain rates

for the stresses. There is however a fundamental difference between this type of production

for dissipation rates and stresses: It is of leading order for the stress balance but of second

order for the dissipation rates for high Reynolds number flows. The situation near the wall

is entirely different. The components of S_# turn out to grow with wall distance as follows

sh = -2yG<u>(0)o_(_l_)(0)+ o(y _) (41)

sh = -16.d0_,(v)(0)(b_) + o(y') (42)

S]3 =0.0 (43)

S_2 = -8uy2Oy(u)(O)(b_) + O(y 3) (44)

The secondary production terms S_# are not of leading order near the wall, but closed. Hence,

they need not be neglected.

1.2.2.4 Secondary production S_#.

The series expansions lead to the following results

S,_l = -y{O_(,,)(O)O_(e,_)(O) + 20_(v)(O)(e,_)(O)} + O(y _)

s_ = -2_y _{2Gi,,)(0)0,(b_) + so_(,,)(o)(b_)} + o(_')

s_ = -y{G<u)(o)o,<_)(o) + 2o_(_)(o)(_)(o)} + o(d)

(45)

(46)

(47)

10



S_2 = -2vy2{2Oy(u}(O)((b2Ozal) + (alOzb2}) +402y(v}(O)(alb2}} +O(y 3) (48)

It is clear from these expansions that the source terms S2Z are of second or higher order for

boundary layer flows.

1.2.2.5 Primary production.

The primary production or vortex stretching terms are the dominant production terms in

high Re-number flows. For the near wall region they appear in expanded form as

$311 --_ -4v{y(l Ox(a_) + 3(a2b2)) + O(y2)} (49)

= -4v{y3(10(b )+ 0 (alb ) + O(y')} (50)

1 2
$333 = -4v{y(-_0z(alCl) + 3(c1262)) + O(y 2) } (51)

S_2 = -2v{y2(O,(b2a_) + 8(aib_) + 2(c_b:O=ai) + (a_clOzb2)) + O(y3)} (52)

The primary production is not of leading order near the wall, but grows with the same order

as the secondary production term S_ with wall distance.

1.2.2.6 Viscous destruction.

Viscous effects can destroy the rate of dissipation and this process is contained in D_Z. The

series analysis shows that the components of D_Z are near the wall given by

Dll = 4v 2 {4(a]) + 2((0_al) 2) + 2((0,al)2)} + O(y) (53)

D22 = 4v 2 {4(b_) + 24y(b:ba) } + O(y 2) (54)

n3a = 4v2{4(c 2) + 2((0=cl) 2) + 2((0,cl):) } + O(y) (55)

D12 = 4v 2 {4(a262) + y(4(O=alO=b2) + 4(O=alOzb2)+

12(a2b3) + 12(a362))} + O(y 2) (56)

All components of D_ turn out to be of leading order.

1.2.2.7 Pressure correlations.

11



The Taylor seriesfor the pressure(19) containsviscoustermswhich aredue to the momentum
balances. Differentiation of (19) leads to expansionswhich contain viscous contributions in
lowest order. The componentsof the pressurecorrelations S4fl appear as follows

S_1 = 4u2{6(axb3) + y(2(axaloq_a2) + 2(c3zalO=a2) +4(a20qxb2) + 6(a,c3zb3)) + O(y2)} (57)

$42 = 4v2{12y(b263) + 0@2)} (58)

$43 = 4v_{6(clb3) + y(2(Gc_Ga2) + 2(oqzcla,b2) + 4(c2Gc2) + 6(cxGb3)) + O(u2)} (59)

6

S_2 = 2u 2 {6(a, b3)+ y(2(cgzaloqxb2)+ 2(Oza, i:9_b2) + 12(a263)+ 4(b2Oxb2)+ --_v(axp3))+ O(y2)}

(60)
The series expansions of the pressure correlations lead to several important conclusion: The

effect of the pressure correlations in lowest order is local in terms of velocity correlations. No

Poisson integral appears in lowest order since the wall pressure does not appear in the lowest

order terms. The split of the pressure correlations obtained in chapter 2.1 leads to a flux

F_Z. r such that the corresponding source term is strictly redistributive and local in terms of
velocity fluctuations. The pressure flux is local in velocity in expanded form up to second

order. Note that there is a clear advantage for not splitting the pressure correlations in the

Reynolds stress equations near the wall since the split terms (rate of strain correlation and

pressure transport) grow with different rates in the viscous sublayer. This is not the case for

the pressure correlations in the dissipation rate equations. The components of the pressure

flux emerge for the case of a flat plate boundary layer as

FP12 = _-_(02P'OlV_)

4v , ,= --{ (O3p + (O,p'O, }
P

4g _ v_

2u f t
FlP22 _-- __ {(oq2p (:')1v2) -- (O3ptO3V_)}

P

which can be analyzed with the aid of Taylor series. We get the following estimates for the

divergence of this flux near the wall

12



It follows that

02F&2= O(v)
02Ff32= S_,_(_Ozc,) + O(v)

o2rf_2 = -4_,2(_O,c, ) + o(v)

o_F_I_+ 02F&2= -02(.02(_=)) + o(v)
holds, This proves that the pressure flux terms are of leading order near the wall because

viscous diffusion is of leading order in this region.

1.2.2.8 Near wall production.

The production terms proportional to the curvature of the mean velocity profile are respon-

sible for additional production in the near wall region. The series expansions lead to

S_ 2 2= 4u {y(a, )cOxv(u) (0) + y2( (a2)(:_zvy (u) (0) + 3(al a2)O_ (u)(0)+ 2(a2b2)O_v (u) (0)) + O(y3)}

(61)

S_2 = O(y 3) (62)

S_3 =0 (63)
2 3 3

$52 : V_f 2 { (al)C_xyy(u)(O ) -[- (a,b2)Oxyy(u)(O)) } --{- 0(_/3) (64)

The near wall production emerges as second order effect near the wall if the boundary layer

assumptions are satisfied. The component (ell) receives all the energy in lowest order.

1.2.2.9 Transport equations in lowest order.

The series expansions for the source and diffusive terms allow the set up of the transport

equations for the components of the dissipation rate tensor in lowest order. It turns out that

all equations are of the same zeroth order.

0t(ell) = G%f(VG%f(ell)) -- Oll + $141 (65)

0 = &r(vO.r(_22)) - D22 (66)

0,(e3a) = O-t(uO.y(_a3)) - D33 + S_a (67)

0 = (%t(VG%f(£12)) -- n,2 + $42 (68)

These equations are valid near the wall provided none of the surviving correlations vanishes.

For steady flows the following equations hold then at the wall

nil -- $41 --- 0_7(V0_7(511) )

D22 = a.y(uc%r( e22) )

D_2 - S'_2 = O.r(vO.r(e,2) )

which can be combined with the limit relations for the stress balances to establish constraints

for the modelled terms at the wall.

13



1.3 Closure model for the dissipation rate equations.

The series expansions for the near wall properties of the dissipation rate equations can be

used to analyze and to modify closure expressions. In several cases no model expressions

exist and new models will be developed and analyzed.

1.3.1 Time scales.

Several time scales can be constructed for the near wall region with the aid of the dissipation

rate tensor. First we note that a scale dependent on the wall normal vector can be obtained
in the form

k
r -- (69)

If n-y = *-t2 it follows that this time scale is given by

k
T--

and the series expansions show that both numerator and denominator depend quadratically

on wall distance. The wall limit is in fact a nonzero value given by

= <0  00 u0>+ <O,woO wo>
4 <0  v00  v0> (70)

Hence, a time scale with a nonzero limit at the fixed wall was constructed. This time scale

avoids the problem associated with the modified (also called homogeneos) dissipation rate

- ,- 2

which may change sign in the flow field. The inverse of another time scale with tensorial

character using the dissipation rate tensor can be set up as follows

where (v'_v'6} -_ denotes the inverse of the Reynolds stress tensor. Conversely is a time scale

given by

1 t I -1 i I

where {e_)-I denotes now the inverse of the dissipation rate tensor.

1.3.2 Turbulent diffusion.

14



The gradient flux model for F_ a can be given in the form

o,_~ k t r
(73)

where the kinetic energy is denoted by

1 ! !

and the dissipation rate , by
1

The constant cs has values in the range 0.15 - 0.18. The near wall properties of this model

follow from the series expansions (10) to (27) as

1 = O(v5)

whereas the exact term has a first order variation with respect to the wall distance according

to (37). Similar discrepancies are observed for the other components. It is clear that model

expressions developed for the high Re-number regime will not represent the near wall region

properly. The present model (73) implies that near the wall turbulent diffusion is essentially

neglected in comparison to the exact term. Inspection of the model (73) shows that there are

two reasons for its failure near the wall: The time scale { approaches zero at the wall and

the diffusivity is solely determined by the normal stress component ((v') 2) which varies as y4

near the wall. The situation can be improved if a composite time scale that approaches the

scale defined by (69) near the wall is used. The modified closure model is then given by

_a 2 k
F._ ---_c, n,_n,.,(%_) (v'._v_)O,(,,_a) (74)

The factor 2/3 results from the requirement that the high Re- number limit of the time scale

must agree with k/e.

A different model that satisfies all growth estimates and has the correct tensorial and

dimensional properties can be constructed if the dependence of the turbulent flux on the wall

parameters n and Ret is taken into account and the near wall model is combined with the

high R,-number model. The near wall model is given by

It is straightforward to check that it has the same growth rate and the same tensorial prop-

erties as the exact term. The model represents turbulent transport towards the wall and

has the form of a convective term. There exist several klgh Reynolds number models for the

15



turbulent flux of dissipation rate (Hanjalic and Launder, 1972, Lumley, 1978). The present
model is an analogueof the flux model for the stresses.It is given by

k _ I 0

The combined closure model is the set up as follows

where fw2(R,t) denotes a function of the local Reynolds number such that fw2 goes to unity as

the wall is approached and to zero in the turbulent zone. Furthermore, The function f_,2(R,t)

should be nonnegative and it should not modify the dependence on the wall distance for the

near wall model. It follows that f,,,2 must be an exponential function of the Reynolds number

given by

fw2(Ra) = exp[-( _ )2]

where Re2 is a constant measuring the range of influence for the near wall model. This

function of the Reynolds number has the well known property that all its derivatives at zero

vanish. Hence, it does not modify the growth rate of the near wall model.

2
1.3.3 Secondary production Sa#.

The properties of $2_ in the high and low Re-number limits will be considered first. Local

isotropy requires that
2

• 3'6
hm •,(%,_'_=

holds. It follows that the secondary production terms S2Z are for high Re-numbers given by

lim S_R 4= (75)

The divergence of the mean velocity is zero for incompressible flows and it follows that the

high Re-number form of the secondary production terms can be neglected. The near wall

variation of the secondary production term $21 according to (45) can be regarded as

S121 '- -('a)Ox(el,) - 2(ell)O_y('o) -1- O(y 2)

and it follows that this term is at best of the same order of magnitude as the mean convection

term. Similar relations hold for the other components and we conclude that the secondary

production terms S_a can be neglected.

1.3.4 Primary production and viscous destruction.
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The closuremodel for theseterms is fundamentally different in the high and the low Reynolds
number limits. Both limits needto be consideredand the correspondingclosuremodels must
be merged to cover the range of Reynolds numbersfrom zero to infinity.

.High Reynolds number limit.

The order of magnitude estimates for primary production and viscous destruction at high

Re-numbers shows that they are of leading order, but their difference is of the same order

as the secondary production term S_Z. It follows that they should not be treated separately
but their difference should be modelled as function of the available information. The model

consistent with second order moments is in general given by

(76)

The dimensionless and symmetric tensor q_Z should represent both production due to the

interaction of vorticity and strain rates and the desctruction due to viscous effects. If we

impose the condition of local isotropy on this model we get the following variant

where the first part represents the productive and the second the destructive contribution to

the model for the difference of S_Z and D_. The model can be set up to be consistent with

the standard expressions for the trace equation (see Launder, Reece and Rodi, 1976)

and the time scale is given by

The closure model

k

S_ - D_ - c,,_6_(v_v6)Ox(v_ } - c,2(e_}_ (77)

emerges. It is, however, not applicable to wall bounded flows since the destructive part of

this model becomes singular as the wall is approached. This deficiency can be corrected

either by defining a time scale that does not go to zero at the wall or by merging low and

high Reynolds number closures with a Reynolds number dependent function such that the

singularity is removed. Finally, we note that this model is not necessarily positive definite

because the productive part q(1) is not positive definite, a property shared with the exact

term. Refined closure models can be constructed using tensorial time scales introduced in

chapter 1.3.1.

Low Reynolds number limit.
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The dependenceon the wall distance is the deciding property as the wall is approached. We
recall that the primary production terms decaywith wall distance,according to chapter 2.2.5,
as follows

o(s, ) = o(s 3) =

=

o( ) =

whereas the viscous destruction terms are all of leading order

O(D_z) = 1

according to chapter 2.2.6. It follows that they must be modelled separately in the near wall

region. The first step in the construction of the low Reynolds number version is the analysis

of the near wall properties of the high Re-number model. It follows from (77) that

which is at variance with the detailed decay laws for S_ given above for a = /3 = 2 and

a = 1,/3 = 2. However, since the primary production is not of leading order near the wall

'1'(2) If weit would be acceptable. A more serious problem arises in the destructive part z,_.

construct a time scale such as (69) for the near wall region we avoid the singularity, but it is

not possible to satisfy the decay laws for the destructive terms D_. It follows that the time

scale in any closure of the form given by _11(2)x,_ cannot be a scalar but has to be a tensor of

rank two (or higher) with positive eigenvalues. It is not difficult to construct a closure model

q(2) such that the decay law is satisfied. For instance, the model

Da_ _ ce2r 6 Oea_ Oe_
Ox_Oz_ OxrOz_

with (69) as time scale possesses the correct tensor properties and the correct decay law as

the wall is approached. However, it is unacceptable as closure model because it produces

in regions where the second derivatives are all positive a second order pde with negative

diffusivity. The initial/boundary value problem for such an equation is not well posed and

the numerical solution futile. Furthermore, this model would not be realizable, because the

limit (e_) ---. 0 does not imply that the second derivatives of (e_) go to zero. It follows that

the closure model for the viscous desctruction of the dissipation rate components must be of
the form

D_,# ---F_,#( (e.r,7) , (v_ v',l), O¢ ( e.r, ), cg¢(v_ v ',7), R,, )

where Ret denotes the turbulent Reynolds number defined by

k 2

Ret - (78)
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The example cited abovefor the destruction of dissipation rate showedthat derivatives lower
that secondshould be used. Severalclosuremodelscan be set up that are tensorially consis-
tent, have the correct decay law near the wall and avoid the stability problems incurred by
negative diffusivities. We note two of them, first

(79)
Daft-- - c_2 r ce3v2n'rn$ cox. r ax6

and

(e,_) _ _.._ 0 (e_,)) (80)ao,_--- - c,_ 7" c'3ven'rn6 ( )-_x, ( ,

as second variant. Note that n a denotes the unit normal vector of the wall pointing into

the flow field. The time scale v is given by (69) to avoid a singularity at the wall. The two

models look very similar, but inspection of the time scale (69) shows at once that the first

model is most likely unstable. Suppose that kinetic energy k and dissipation rate component

n-_n6(e_6) = (e22) are in equilibrium, then assume that this equilibrium is disturbed, say the

kinetic energy is reduced by a small amount. It follows from the fact that the second part in

the first model is quaclratically proportional to the kinetic energy that the rate of destruction

of the dissipation rate components is decreased by the disturbance and consequently are the

normal stresses further decreased and the equilibrium state is not recovered. Hence is this

model unstable. It follows that the second model is the preferred one.

Merger of low and high Re-number models.

The closure models for the destruction term (79) or (80) valid for the limit Re _ 0 and

the destructive part of (77) valid for the high Re number limit must be merged together to

produce a model valid throughout the flow field. Suppose both limit expressions have decay

laws near the wall that do not need change via the function weighting them according to the

local Reynolds number (or any other function propertional to the distance to the wall). The

we need a weight function that does not change the dependence on wall distance near the

wall. This implies that we must find a function which has zero derivatives at zero. It is well

known that the exponential function

1
f(y) = exp(- )

y2

has the desired property, in fact, it is infinitely often differentiable but not analytic at zero

(its Taylor series is identically zero at y = 0). Hence, we can establish a low Reynolds number
function

f(Re) = exp[- 2

which is zero at zero Re-number and unity at infinite Re-number. The constant R_° determines

the range of Reynolds numbers for which the function is close to zero. Other functions

have been proposed that are proportional to some power of the wall distance and change

therefore the decay law. Several models have been proposed for the functions fl, multiplying
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the production of dissipation rate, and f2, multiplying the destruction of dissipation rate.

Vandromme et al. (1983) suggested

fl = 1.0

and

]'2 = 1.0 - 0.22 exp{-( Ret__g_)2}

based on the original model of Hanjalic and Launder (1976) and obtained good agreement

with measurements in flat plate boundary layers. Recent developments surveyed by Launder

(1989) use the second and third invariants of the Reynolds stress tensor to represent the wall

influence on production and destruction processes.

1.3.5 Pressure correlations.

It was shown in chapter 1.2 that the pressure correlations can be split into transport and

source terms such that the source terms are strictly redistributive and have no effect on

the trace of the dissipation rate tensor in analogy to the pressure-strain correlations for the

Reynolds stress tensor. It follows that they must redistribute intensity among the components

of the dissipation tensor. Kolmogorov's hypothesis of local isotropy requires that the dissi-

pation rate tensor approaches its isotropic form as the Reynolds number approaches infinity.

It follows that a return to isotropy model given by

would satisfy this condition. The open question is the time scale. The scale

k

(79)

is the obvious choice for the high Re-number limit, but the model becomes incorrect as the

wall is approached because r -1 goes to infinity with y-2. Modification of the time scale

according to (69) solves this problem and

(s0)

emerges as nonsingular variant. The transport part of the pressure correlation can be mod-
elled in terms of the viscous diffusion terms because the wall limits indicate this form. The

model
V

F_._'- - 70_(e_6)n6 {e_,,ot_b,o + e_o_t.b_, - e_,_t_b_ - eZ,.,t.,b_} (81)

where the tangential unit vector is defined by

t. = iv.)(6) (s2)
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and the binormal by
ba -- eaa_t_n 7

satisfies the near wall properties for the components F_I 2 and F_3 2 and neglects the compo-

nents F_22 and F_22. The effect of the diffusive part of the pressure correlations is therefore

inhibition of the viscous diffusion near the wall for the diagonal components corresponding

to motion parallel to the wall. The effect on shear component and the diagonal component

corresponding to the motion normal to the wall are neglected.

1.3.6 Near wall production.

The near wall production requires in general flows a closure model. However, for the near

wall region in boundary layers expressions can be given that are exact in the wall limit.

I ; 2
5'[,---'- - 4u02 (v 1%)Ol_<v, ) (s3)

$252 = S_3 = 0.0 (84)

a .0:- (ss)

The model assumption is essentailly the assumed validity of these expressions for finite dis-

tance from the wall. Since all expressions are proportional to the laminar viscosity, quick

decay with increasing wall distance can be expected.
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2.0 Reynolds stress and complete second order models.

The usual closure models based on the trace of the dissipation rate tensor will be considered

first. Several versions of the Reynolds stress model are available and the most relaible stress

model (Vandromme et al., 1983) will be evaluated. It will serve as test bed for the complete

second order closure.

2.1 Stress equations.

The balance for the Reynolds stress components is given by

a o(v_,) ,, o(v_,)<p>( + (v.,)o-_)(,,'_v'_)= -<p>((vq)-_-;-x, + <v_J-Ei-_-=) , ,. or- o,4,)>

o o<v-vS> ' ' ' ' ' - (86)
+-'_x_ (# Ox_ <P){V°'V#V_>-6°"_<P'V#)-6Zv<PV°'>)-<P>e°'#

where the dissipation rate tensor is defined by (1). The split of the pressure correlation into

pressure transport and pressure rate of strain correlations can be shown to be inappropriate

near the wall. It follows from (19) that the Taylor series for the pressure gradient is given in

terms of velocity derivatives at the wall up to second order. Hence, it is possible to represent

the Taylor series for correlations involving the pressure gradient in terms of local velocity

correlations at the wall up to second order. If the pressure correlations are split as in (86)

the pressure fluctuation itself appears and the solution of the Poisson equation introduces

the well known integral contributions.

The standard second order closures employ the equation for the trace of the dissipation

rate tensor
1

which follows at once from (2)

!

(O, + (v_)O.r)e = O.y[vO.ye - (v_e> + F_] + S' + S2 + S 3 + S s - D (87)

The source terms are defined as follows. There are two groups of secondary production terms

(88)

and
I Is_- -(vO_v_O,v_)(o,<v_)+ 0_<v,))

The primary production term is given by

(sg)

s 3 =_-(,_.,O,v') (90)
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and the pressurecorrelations canbe given in the form

$4 _ 2u 2 , i
_ P (O_.rpO.rv_) (91)

It was shown in chapter 1.2.1 that the pressure correlations can be represented as the sum of

the divergence of a flux and a redistributive source which has zero trace. Hence we get

S 4 =06Ff (92)

where the flux is defined by

or

2/,/

F_ =--c,._,,e_._(a._p'a,v') (93)
P

v,; = -2"<a.,p'a.,v'_) (94)
P

The near wall production of dissipation rate is proportional to the curvature of the mean

velocity profile
t ! 2s_--2,(v_a_v_)a_(v_) (95)

and the viscous destruction of dissipation rate is given by

2u2/_'-q2 yt .q2 Ut \O- \'6-r _6_ o,/ (96)

The properties of the source terms have been established in chapter 1. and we observe that

none of the source terms is closed in contrast to the equations for the dissipation rate tensor.

2.2 Standard second order closure model.

The development of the full second order closure was based in a systematic way on

existing closure schemes. The standard second order closure using the trace of the dissipation

rate tensor set up by Vandromme et al. (1983) was an important stepping stone and can be

applied to test closure models for the various processes governing the dissipation rate tensor.

The model is given by

_ , , a(v_)_<P)(o_+ ('') )(v'6)= -<p)(<vvc,) + (,,_v.,)
0zv

]

a, O<v%)
+¢"_ + b__l_' ox., - Fo_.,}-(p)(_o_)

The pressure rate of strain correlations are modelled by

e , , 26_k ) ,c2+8,p,_ A 26_,_p)@_=-clfp(R_)(p)-_((v_v_) - - f,(n_)(p)l_t .-

(97)
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8c2- 2(D_z _25_zp ) 30c2 - 2k(O(v_} O(v_,) ,,- 3 55 ox_ + Ox--7-) + %_) (9s)11

as the sum of return to isotropy, fast response and wall contributions, where

,, o(v.)
,, a(v_) (v#v_) (99)

Po_ - -(vov.y) Oz._ Ox_

and P - 1/2P_,,_ and

O(v.,) ,, O(v._)

D,_# =_-(v:v;) Ox# (v#v._) _ (100)

The wall contribution is given by

¢_°_fl--([) {C1"-£ ( (v°_vfl) - 36'_k ) + c_(P'_z - D_,z) + csk( O(v'_)
Oxz

O(vz) 25 O(v't) k"S (101)
Oxo 5 °_'-E2_)} _y

The dissipation rate tensor must be modelled in terms of its trace and the anisotropy of the
stress tensor

~ _ I l

(eaZ)=.-£(f,(v_,vz) + (1 -/,)25_k) (102)

where fs depends on the local Reynolds number. The turbulent flux is modelled by

.ke 0 , ,F,_Z-_'- - cs,(p) (v;v_)-_z (v_,v _) (104)

' = 0.1597, ' = 0.0133,The constants are given by c_t = 0.25, cl = 1.5, c2 = 0.4, c I c2

c5 = 0.0041. The low Reynolds number functions are given by

-2

f'(R_) = exP(1 + R-:_/30) (104)

and

h(R,) = tanh(R_/50) (105)

The equation for the trace of the dissiaption rate tensor requires closure for all relevant

processes on the right hand side. Following Vandromme et al. (1983) the model

-F (vT) )e = + -- cd(p)fl(Re)fu(Re,Ry)...£(vo, v#)-_x _

-c,2(p)f2(R,)k[e- 2u\--_z2 ,1 1+ 2cff,,#(v;v'_) k Oz.rOx_ Ox.fOz,
(106)
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The low Reynolds number functions are given by

fv2

f_ = [1- exp(-f,,lRv)]2(1 + --_-) (107)

and

where

1
fl = 1 + -,_-10_3 (108)

8(f,, + J-U )

f2 = 1 - 0.22 exp(---_-)R2 (109)

_/ky
Rv -_- (110)

v

and f_l = 0.0165, fv2 = 20.5. The performance of this closure model was tested in fiat plate

bounda_, layers. The results are contained in fig.1 to fig.& The mean velocity in fig.1 is in

good agreement with the law of the wall. The turbulent Reynolds number and the damping

function f,(,Re) in fig.2 and fig.3 prove that the boundary layer is fully developed. The

Reynolds stress components in riga to fig.8 show the expected distributions with maximal

values in reasonable agreement with the experiments.
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2.3 Full second order closure model.

The development of the full second order closure was prepared in the first chapter which

contains the properties of all transport equations for second order moments derived from

series expansions with respect to wall distance. The results obtained with series expansions

are called growth laws since they describe in first or higher order the growth of correlations

with wall distance. The challenge is now to construct a closure model that satisfies all tensorial

and realizability conditions and the growth laws.

2.3.1 Closure model for the stress equations.

The closure model for the stress equations follows closely the model developed by Van-

dromme et al. (1983). The only difference is that the model (102) for the components of the

dissipation rate tensor is not used. The stress equations appear then according to chapter

2.2 as

0 £ (iv_v_O(v_) , _ _(p)(_ + (v_) )(v'v_) = -(p),, _' 0x_ + (v_v_) )

-clfp(Re)(P)-'£ ((vavB}- - f'(Re)(P)l---i-_k =P- 11 3

30c2 0_ O(vo) ,0
55 Oxo, Ox_

0r O(v" v'_)
+

where P_# and D_t_ are defined in (99) and (100) respectively and the wall contribution

to the pressure correlations is given by (101). The low Reynolds number functions are all

established in chapter 2.2.

2.3.2 Closure model for the dissipation rate equations.

The transport equation for the dissipation rate tensor

0 0 OF,_-y 1 2 3 4 5

(-_ + (v.y)-_7 )(e_,#) = 07 + S_,# + S_,# + S_,# + S,_# + S_,# - D,_#
(112)

requires closure for the turbulent flux contained in the total flux F_&r and the source terms

4 5S_, S_ and D_.
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Model for the turbulent flux: This model follows the suggestionof Vandromme et aI.
(1983) for the turbulent flux of the trace of the dissipation rate tensor

_Z_-v Ox:, + c,(p) (v._v6> (113)nirl_?e¢,_? _x,5

The only modification is the use of the time scale (69) to improve the behaviour near the

wall. The value for the constant c_ = 0.1 is consistent with the six-equation model. A more

sophisticated model was developed in chapter 1.3.2.

Model for the source S_Z: The secondary production can be neglected near the wall

according to chapter 1.2.2.4.

Model for the source Sa_Z: The primary production is not of leading order near the wall

but varies like the closed production term S_ in the near wall region according to ch.1.2.2.5.

The present model utilizes this property and the analogy to the stress transport exploited

in the equation for the trace (106), where the high Re-number part of the model for the

difference between the leading terms having the character of a production term is modelled

proportional to the production of kinetic ernergy

O(v,,) O(v#)] , , a(v#)]
3 - _ _ -c, lfv(R,t)(p)...#[(v_v;)Tx _ + (v_v_) Ox v , (114)ox.., ox., J

The constants are given by cd = 1.45 and c_3 = 1.0.
4 .

Model for the source term S_. The pressure correlations were shown to be of leading

order near the wall for all dissipation rate components except e22 (see ch.1.2.2.9). They can

be split into diffusive and reditributive source terms (ch.l.2.1). The diffusive part is assumed

to be represented by the closure for the turbulent flux (113). The model for the redistributive

source is analoguous to the return to isotropy model for the stress transport equations. It is

given by
4 - e 2

co,_fl= - c,4 (p)'#( (ea,_) - -_6e, Ze) (115)

with c_4 = 12.5.

Model for the destructive term D¢,_: It was shown in chapter 1.3.4 that the high Re-

number model for the difference of primary production and viscous destruction becomes

singular as the wall is approached. Furthermore, the growth law for the viscous destruction

term D_ implies that a model similar to the high Re-number case

T

with a scalar time scale is impossible. It follows that a tensorial time scale must be con-

structed to conform with the growth law. The present closure is a composite expression

containing the high and the low Re-number models

Dc,_=c,21(p)(1 - B(R,_,)) n6n'_(e6() n'ln¢ Ox,1 i:9x¢
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+c_2<p)_z_(1 - f_(Re,))_ (_) + c_23(p/fs(n.)_(_Ik {_zl (116)

where the preliminary values for the constants are c_21 = 0.32.10 -4, c_22 = 26.25, and

c_23 = 12.5. The low Re-number functions are set up as follows:

f.(R.) = (1 - exp[-0.0165Ry])2(1 20.5- Re---7) (117)

where

denotes the dimensionless wall distance and

x/ky

V

fg n. ) = ta,_h(O.OO4n.) (118)

The turbulent Reynolds number is defined by

k 2

R et -.---
(Ev

2.3.3 Preliminary results for the complete second order closure.

The system of nine parabolic differential equations was tested in reduced form by pre-

scribing the profiles for mean velocity and the Reynolds stress components which were ob-

tained with the six equation model discussed in chapter 2.2. The numerical solution for the

remaining equations for the disssipation rate tensor was carried out and convergence was

achieved after a few hundred steps. The results are presented in fig.9 to fig.16. The figures

contain also as broken line the dissipation rate components deduced from the local relation

suggested by Launder and Reynolds (1983) and modified by Lai and So (1990)

(_.z);2(I- fw(n.))6_z_

+f,,,(n.) k 3 I I
1 + -_n._n6(v.yva}

where
Ret 2

/.(Re,)= exp[-(TE6 ) ]

The dissipation rates in the figures are normalized with the wall variables u and u_

(119)

@a_) v
_+

aS -_ ,4
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with u,- = X/-_/P denoting the wail shear velocity. The symbols in the figures represent the

results of the numerical experiments carried out by Mansour, Kim and Moin (1988).

The component e+l in fig.9 (logarithmic scale) and fig.10 (linear scale) shows a negative

gradient near the wall which implies that the time scale

-1
?-

would change sign and the destructive term would become a production term violating real-

izability. The prediction of e+l in the outer (fully turbulent) part of the flow field is too small

and the near wall part appears too large compared to the direct simulation, but the profile

shape is in good agreement with the numerical experiment. The component e+2 in fig. 11 and

fig.12 reasonable agreement between the full second order closure and the direct simulation,

but the local relation of Launder and Reynolds overpredicts the component by a factor of

three. The prediction of the component e+3 in fig.13 and fig.14 shows a similar behaviour as

the component e+l in fig.9/10. The shear dissipation e+2 in fig.15/16 shows overprediction by

the full second order closure and underprediction by the local relation near the wall whereas

the outer part is in good agreement with the direct simulation data.

2.3.4 Conclusions.

The results presented lead to several conclusions. It is clear from the theoretical develop-

ment that only the full second order closure offers the tools to construct the appropriate time

scales in the near wall region of a turbulent boundary layer. The growth laws for the various

correlations appearing in the stress and dissipation rate balances limit severely the model

expressions and indicate that composite models for the high and the low Reynolds number

regimes must be established. The model discussed in this chapter produces good results if

velocity and stress components are held fixed and this indicates that the model expressions

are consistent with the direct simulations. However, the stability of the closure needs to be

investigated and this part may lead to modifications of the present version of the full second

order closure. This part of the project is currently under way.
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